大模型首献2000万营收 人工智能有望成三六零第三增长曲线

8月30日晚间,三六零(下称“360”)公布了2023年半年报。公司上半年实现营收45.03亿元,第二季度营收25.37亿元,同比增长10.42%,环比增长29.08%。值得一提的是,新兴业务“360智脑”大模型已创造近2000万元相关业务收入,有望成为第三增长曲线。

展望未来,对于360而言,互联网、安全、AI三大增长曲线如能实现“共振”,那么其内在价值的释放速度将远超市场预期。

大模型实现营收近2000万元

在众多企业还在为“百模大战”如何取胜绞尽脑汁的时候,大模型已为360带来了第一笔营收。

财报显示,基于 360 智脑给中小企业客户所提供的 AI 增值服务所带来的良好体验,公司取得近 2000 万元的相关业务收入。2000万金额虽然不大,却是中国大模型走向产业化的重要一步,也是360未来商业前景的“星星之火”,这一数字会随着大模型市场需求的井喷,为360带来更大想象空间。

据悉,在“C-Eval”最新公布的中文大模型能力排行榜上,360智脑大模型平均分超过GPT-4,尤其在社会科学及人文科学两项上表现优异。C-Eval是由上海交通大学联合清华大学、爱丁堡大学构建的中文基础模型评估套件,核心考量大模型的知识和推理能力。

消息人士称,国内大模型陆续通过《生成式人工智能服务管理暂行办法》备案,360智脑也将很快通过备案,面向C端用户提供服务。

360集团创始人周鸿祎认为,大模型是工业革命级的生产力工具,将会带来一场新工业革命。“不仅仅是一个聊天机器人,也不是像抖音这样消磨人时间的娱乐工具。大模型真正的机会在企业级市场,最应该抓住产业发展的机会。”

随着数实融合的进一步加深,在中短期内,基于内容创作和娱乐导向的生成式人工智能场景 应用将有较强的市场潜力。而从长期来看,在产业数字化升级的过程中,金融、医疗、教育、工业等 各行各业的人工智能应用也将快速发展,助力行业降本增效的同时,衍生出更多的创新增量。

据了解,360人工智能大模型坚持“两翼齐飞”策略,一方面发展核心技术,另一方面抢占优势场景落地,比如推出企业级AI大模型解决方案,发起GPT产业联盟,在“360智脑”通用大模型的基础上,与合作伙伴一道推出“税务大模型”“企业服务大模型”等行业大模型,推动大模型产业发展。

周鸿祎在采访中解释,有了通用大模型作为基座后,360可以寻找不同的产业合作伙伴,不同的行业、企业、城市场景来做垂直大模型。

“垂直类大模型,不需要用千亿或者万亿模型,可能用百亿、十亿、几十亿参数的模型,这样整个训练时间、调试成本、部署成本,大概比GPT的成本低至百倍以上,如此才能让大模型走下神坛,让大模型赋能百行千业、走进千家万户,才能成为工业革命。” 周鸿祎称。

迄今,360 智脑已升级至 4.0版本,拥有了包括生成与创作、阅读理解、多轮对话、逻辑与推理、 代码能力、知识问答、多语种互译、多模态、文本改写、文本分类等十大核心功能,能够覆盖大模型应用的所有场景,并且成为唯一通过工信部信通院“可信 AIGC 大模型测评”的国产大模型。

此外,在多次权威大模型测评榜单中,360智脑取得的成绩也一直稳居国内第一梯队。

财报披露同日,由清华大学、上海交通大学和爱丁堡大学合作构建的中文语言模型综合性考试评估套件C-Eval榜单披露,360智脑以69分成绩排名第四,这一分数甚至超过ChatGPT 4。此前5月,360智脑参与中文模型基准SuperCLUE测评,更是位列“国产第一”。

360商业化持续升级 三大增长曲线有望“共振”

回顾近20年的发展史,360可谓经历了多轮商业模式的迭代。

最初,360起家于PC互联网时代。当时,知名杀毒软件都是收费服务,只有360适时推出了免费杀毒服务,以广告展示来盈利,这颠覆了传统互联网安全行业模式,甚至也极大影响了后续中国互联网行业的商业模式。

从财报来看,互联网广告相关业务依然是公司的主力营收来源。上半年,360互联网商业化及增值服务共实现收入 26.81 亿元。截至报告期末,360 PC安全产品的平均日活跃用户数(DAU)近1亿,平均月活跃用户数(MAU)4.7亿,安全市场持续排名第一。

之后,随着360杀毒在短时间内得到大范围的普及,其受众也从最初的C端用户逐步拓展到B端,商业模式出现了跃进式的迭代与变迁,从而形成了多元化的收入来源结构。

财报显示,公司上半年安全及其他相关业务实现营收9.08亿元,其中第二季度收入6.54亿元,同比增长98.76%,环比增长157.16%。安全第二增长曲线已完全成型。

值得一提的是,“安全即服务”是360最新锚定的市场。把安全能力全面“云化”和“服务化”, 360打造了多租户云化安全服务平台360安全云。产品发布两周后,客户数已突破数百家。这对安全服务的红海市场将带来商业模式的巨大颠覆,有望开辟全新的蓝海市场,甚至未来网络安全行业都会变成服务业。

“靠卖盒子已经是红海市场,价格战打得非常厉害,利润率非常低。”周鸿祎分析,“而我们希望通过这件事推动行业的创新。如果再靠卖盒子,市场就是这么大,原来不愿意买的人还是不会买。但通过安全即服务的方式,降低客户的采购成本,就能吸引更多的客户在安全上以适度的投入,来解决安全问题。”

当前,一阵大模型和生成式人工智能的旋风,正在席卷众多领域,安全行业亦不例外。从财报来看,大模型初显360第三增长曲线的潜力。

凭借领先的AI技术,360于6月推出企业级AI大模型解决方案,发起GPT产业联盟,在“360智脑”通用大模型的基础上,与合作伙伴一道推出“税务大模型”“企业服务大模型”等行业大模型,推动大模型产业发展。

作为数字安全龙头企业,360长期进行人工智能安全研究,涉及框架安全、模型安全、生成式AI安全等,累计发现主流机器学习框架的漏洞200多个,影响全球超过40亿终端设备。360将全球前三的安全能力与“360智脑”结合打造出国内首个安全大模型。目前,360安全大模型已在360内部及自有产品落地应用,并可面向市场和用户交付。

作为同时涉足互联网、安全、大模型的企业,360无疑具有独特的竞争优势。“人工智能安全是一个特别大的问题。现在很多做大模型的公司不太了解安全,了解安全的公司又没有能力做自己的大模型。360恰恰在这个中间是一个跨界,本身做互联网安全,也有搜索引擎业务。”周鸿祎提到。

在周鸿祎看来,360未来的使命,一方面用人工智能解决传统安全问题,另一方面用人工智能技术结合安全能力,解决人工智能的问题。“既利用它为人类创造新的文明,同时又能够把它的能力放在一个框架、放在一个笼子里,不要伤害人类。”

想要做大模型训练、AIGC落地应用、使用最新AI工具和学习AI课程的朋友,扫下方二维码加入我们人工智能交流群

人工智能会取代基金经理吗? 是的,总有一天

几十年来,人工智能取代人类一直是科幻小说的主题。人工智能通常无法替代的明显的人类部分往往是“情感”部分,也就是灵魂。

这对于那些经常以不带感情色彩地追求利润和客观分析财务数据而自豪的基金经理来说,这是个坏消息,因为它们没有任何太人性化的认知偏见。他们似乎是被没有灵魂的人工智能所取代的主要目标,这些人工智能不仅客观地分析每秒数百万个数据点,而且还能坚决执行基于这些数据点的有效投资策略。 

根据《巴伦周刊》的筛选,迄今为止,只有11只人工智能运营的ETF基金。不过,其他人可能正在幕后使用人工智能。“如果我现在处于一家资产管理公司的位置,我会全面关注人工智能,但更多考虑的是如何从我的业务中剥离一些成本,并提高其运营效率?”晨星公司首席分析师李 · 戴维森(Lee Davidson)说。

对人工智能经理人来说,好消息是指数基金仍然是主要威胁,因为目前由人工智能管理的基金也难以跑赢基准指数。只有一只基金:Qraft AI-增强型美国大盘基金(QRFT) ,业绩跑赢了大市。但随着更多基金的推出和认可机构的“学习”,这种情况应该会随着时间的推移而改变。

用计算机分析股票数据并不是什么新鲜事,这被称为“量化投资”。但是人工智能教会计算机独立思考,适应不断变化的市场、商业或经济环境。这甚至可能最终取代人力资本经理仍在进行的对公司业务的定性分析。 

Kaiju Worldwide 首席执行官瑞安·帕内尔(Ryan Pannell)说,人工智能已经被用来监控与分析师举行的盈利电话会议。Kaiju Worldwide 是一只名为 BTD Capital (DIP)的人工智能 ETF 的子公司。人工智能将会“实时监听”,他说,它不仅会分析高管演讲的文本,寻找影响业绩的关键词,还会“监控首席执行官声音的基调、音调和节奏。由此,它将能够确定市场对(首席执行官)言论力度的可能反应。” 

今天的人工智能ETF基金还远没有那么先进。BTD Capital 对股票采取“逢低买入”的策略。帕内尔表示,挑战在于“找出真正的“低”——一种本质上是人为导致的价格回调。因此,如果你买入,价格将从低位平均回升至高位,你将从价格小幅上涨中受益。” 

问题在于,一些股票可能会因行业或公司的具体情况而下跌,但不会反弹。今年3月,硅谷银行(Silicon Valley Bank)破产,加州其它银行倒闭,就是这种情况。“区域性银行的崩溃是人工智能以前从未见过的模式,”帕内尔表示。这种缺乏理解的情况影响了ETF基金的表现,今年的业绩也不尽如人意。但是 ETF基金的人工智能现在已经“了解了这种模式是什么样的,”帕内尔说,所以它可以减轻未来的损失。 

Qraft 人工智能增强型美国大盘基金采用自适应人工智能系统,根据市场状况调整其对五大股票因素(价值、质量、规模、动量和波动性)的敞口。在过去的三年里,在没有人类经理的情况下,它已经击败了晨星大型增长类别中70% 的同行。 

Qraft Technologies 首席执行官弗朗西斯·奥(Francis Oh)表示,说服家庭投资者相信一台机器是很困难的,所以这些基金规模只有3000万美元。Qraft Technologies 运营着四只基于因子的人工智能ETF基金(AI ETF)。“人类仍然倾向于相信人类的决策,不管他们是否正在获得良好的回报,”他说。

投资者花了几十年时间才接受了1971年发明的自动化指数基金。鉴于华尔街对人工智能的热爱,人工智能可能会更早会被接受。

想要做大模型训练、AIGC落地应用、使用最新AI工具和学习AI课程的朋友,扫下方二维码加入我们人工智能交流群

AI算力不止GPU 国产大模型有望“摆脱”英伟达?

自ChatGPT爆火之后,AI大模型的研发层出不穷,而在这场“百模大战”激战正酣之际,美国芯片公司NVIDIA(英伟达)却凭借其GPU在大模型计算中的出色发挥赚得盆满钵满。

而就在近日,科大讯飞创始人、董事长刘庆峰表示:“华为的GPU(图形处理器)能力现在已经跟英伟达A100一样了,现在已经做到对标英伟达的A100。”

华为方面对此并没有回应,不过,多位业内人士对《中国经营报》记者表示,目前,国内在AI芯片领域已经取得了一定的成就,但要与英伟达A100相媲美,还存在一些挑战。

GPU被掣肘

英伟达在去年收到美国政府的通知,通知称:“若对中国(含中国香港)和俄罗斯的客户出口两款高端GPU芯片——A100和H100,需要新的出口许可。”不仅如此,该许可证要求还包括未来所有的英伟达高端集成电路,只要其峰值性能和芯片间I/O性能均大于或等于A100的阈值,以及包括这些高端电路的任何系统,都被纳入许可证限制范围。

不过,英伟达针对中国客户推出了替代型号A800,与原有的A100系列计算卡相比,A800系列的规格基本相同,比较大的区别在于NVLink互连总线的连接速率,A100系列为600GB/s,A800系列则被限制在了400GB/s,综合使用效率只有A100的70%左右。

但即使这样,原本7.4万元左右一枚的A800,现在也涨到10万元以上,并且“一卡难求”。

刘庆峰指出,尽管中国开发的AI算法非常强大,但国内硬件的计算能力传统上落后于英伟达。他提到了中国企业在训练AI大模型方面面临的挑战,这主要是在英伟达的硬件上完成的,企业内部只能做出微小的调优和训练。由于美国对中国超级计算机行业的限制,对英伟达硬件的依赖成为中国人工智能企业的一个主要限制。

近日,科大讯飞与华为共同发布用于构建专属大模型的软硬件一体化设备“星火一体机”让国内的大模型厂商再燃希望。刘庆峰表示,华为在GPU领域取得了重大进展,实现了与英伟达A100 GPU相当的能力和性能。

对此,华为方面并未作出回应。不过,记者注意到,华为并不研发GPU产品,其旗下共有昇腾310、昇腾910两款AI处理器加速器。

深度研究院院长张孝荣对记者表示,目前国内尚未有媲美英伟达A100的能力。英伟达A100是2020年一款高性能计算芯片,2023年最新GPU是H100,具有更强大的AI推理能力和超高的浮点计算性能。虽然国内厂商的GPU能力已经有所提升,但目前还远远没有达到与英伟达A100相媲美的水平。

不过,在天使投资人、资深人工智能专家郭涛看来,近几年来,我国芯片产业高速发展,在一批关键核心技术取得新突破,目前已经具备生产媲美英伟达A100芯片的能力,但若想实现大规模出货仍然面临很多挑战。

全联并购公会信用管理委员会专家安光勇也认为,目前,国内在AI芯片领域已经取得了一定的成就,但要与英伟达A100相媲美,还存在一些挑战。英伟达A100是一款面向高性能计算和人工智能任务的GPU,具备出色的计算和训练能力,但要达到A100的水平仍需要时间。

“中国有很多GPU的初创公司,不要低估中国在芯片领域的追赶能力。”英伟达CEO黄仁勋曾表示。

虽然距离国内厂商赶超英伟达尚有较大的距离,但AI芯片并非只有GPU。

AI场景需要多核、高并发、高带宽的AI芯片。AI芯片,也被称为AI加速器或计算卡,即专门用于处理人工智能应用中的大量计算任务的模块。当前,AI芯片主要分为GPU、FPGA(现场可编程门阵列),及以TPU、VPU为代表的ASIC(特定应用集成电路)芯片。

FPGA属于具备可编程硬件结构的集成电路,其可编程性和灵活性可快速适应不同AI算法要求,但也存在高功耗的问题。ASIC属于专用芯片,通过算法固化实现更高的算法利用率和能耗比,但开发周期较长、灵活性较弱。

郭涛表示,中国在AI芯片领域的研发和生产方面已经取得了一些重要成果,除GPU芯片外,未来有望在CPU(中央处理器)、FPGA芯片、ASIC芯片等多个方面实现弯道超车。

张孝荣也认为,除了GPU之外,国内厂商还可以研发其他类型的加速器,如FPGA、DSP等。这些加速器可以针对特定的AI计算任务进行优化,提高计算效率和性能。除此之外,还可以通过优化算法和模型设计,减少对计算资源的依赖,提高计算效率。例如,剪枝、量化等技术可以减少模型的参数量和计算量。将AI计算能力下沉到设备端,减少对云端计算资源的依赖。通过在设备端进行本地计算,可以提高响应速度和数据隐私保护。总之,国内可以通过不断创新和技术积累,在AI芯片领域有所创新,不要着眼于不切实际的弯道超车,而要以满足实际需求为主,逐渐缩短GPU领域的差距。

安光勇表示,国内致力于发展本土芯片产业,通过政策和资金支持,促进产业生态的形成,这将有助于国内企业在芯片领域进行合作和创新。不仅如此,中国在人工智能算法和应用方面也有很强的优势。即使在芯片技术上难以迅速迎头赶上,通过优化算法和软件,仍可以在性能和效率上取得优势。

实际上,国内的厂商也在不断实现突破。“当前中国大模型中有一半是由华为昇腾AI来支撑的。”今年7月,华为轮值董事长胡厚崑对外透露。华为昇腾计算业务总裁张迪煊也透露,截至目前,昇腾已认证了30多家硬件伙伴、1200多家软件伙伴,联合孵化了2500多个AI场景方案。在中国,平均每两家AI企业就有一家选择昇腾。

作为“科创板AI芯片第一股”的寒武纪此前在互动平台回复,公司设计、研发的智能芯片不属于GPU,是面向人工智能领域专门设计的芯片。智能芯片的性能和能效优势主要集中于智能应用,在人工智能领域可以替代GPU芯片,但不适用于人工智能之外的其他领域。

而在“传统”的GPU领域,国内厂商也有所建树。摩尔线程全功能GPU显卡可以完成AI模型的训练、推理、精调全流程,目前可以进行ChatGLM和GLM系列模型的推理,并且支持超大大模型的分布式推理和offload推理。

想要做大模型训练、AIGC落地应用、使用最新AI工具和学习AI课程的朋友,扫下方二维码加入我们人工智能交流群

AI重塑未来营销,把营销创新预算的26.9%留给AI

嘉宾|任一 董浩宇 谭北平

编辑|王小坤

AIGC在社媒营销领域的渗透速度比我们预想中更快。来自业内的一线调研显示,如今在一些大的MCN 机构中,用AI 生成内容的占比已经从50%上升到更高。在用户端几乎没有感知的情况下,AIGC在生产效率和转化效果维度都展现出了不错的结果。

「同样主题的内容我们分别让AI和人工来生产然后进行投放,在算法逻辑的维度,人工生产的内容和AI生成的内容相比在逐步落后;在转化效果维度,即媒介投放后链路真金白银的购买上,我们发现AI生成内容的效果也在逐步提升。」数字营销专家、中国广告协会学术与教育委员会副主任董浩宇通过和MCN的一项测试,验证了AIGC当下在社媒营销中的应用潜力。

来自技术方和品牌的实践案例也印证了这一趋势。AI营销公司奥创光年目前可以为国内一线电商平台单日生产10万条视频素材,替代过往素材组合等大量重复性工作,据奥创光年市场副总裁任一介绍,「它的投放效果一般会比过往(人工生产)更好,在一项代理合作投放测试中,我们的视频在抖音的跑出率是该机构原视频的两倍。」

在媒介碎片化和信息大爆炸的时代,内容和创意越来越难出圈,但率先掌握AI工具的机构和品牌方则已经摸索到新的解法。本期对话,我们邀请到了资深品牌市场人、奥创光年市场副总裁任一,数字营销专家、中国广告协会学术与教育委员会副主任董浩宇,以及资深营销人、秒针营销科学院院长谭北平围绕AIGC在社媒营销领域的应用与实践进行了深度探讨。

以下为三位嘉宾的观点分享(经编辑):

社媒平台上的AI内容,比你想象中更多

36氪品牌主理人:在社媒营销领域,各位有关注到哪些与AI相关的应用和趋势变化?

董浩宇:两个月前我在闭门会上分享过当时已经有大概50%的MCN机构在用AI生产内容,之前大家更关注的是你有没有用AI。现在行业里讨论更多的如何用好数据,把过往积累的达人粉丝、回购等数据等更好地应用在AI 内容生产中,如今在一些大的MCN机构中,用AI生成内容的占比已经从50%上升到更高。

整体来看,AI在社媒营销领域的应用可以概括出三个维度:

一是在时间和效率层面的提高上,批量化生产和企业定制化的小模型在逐步增多,我调研的一些大型MCN企业已经在大模型框架下研究如何定制与优化归于它自己的小模型;

二是内容的多账号生产、多样性校验和内容批量化分发的AI驱动的创意与传播新生态模式已经开启;

三是人工智能内容生产和数据的结合,已经应用到品牌创意传播管理的层面,即 AI生成内容之后进入投放周期,再根据投放效果优化下一轮AI内容的创意生产,在这样一个闭环中AI的主导作用在增强。

再补充一个有趣的发现,近期我和一家MCN做了一个数据维度的测试,同样主题的内容我们分别让AI和人工来生产然后进行投放,在算法逻辑的维度,人工生产的内容和AI生成的内容相比在逐步落后,第二在转化效果维度,即媒介投放后链路真金白银的购买上,我们发现AI生成内容的效果也在逐步提升。

任一:董老师刚提到的将数据和AI生成结合的第三种趋势,非常符合奥创光年目前整体的一个服务模式,我们把它叫AI全链路营销。简单来说就是从市场策略洞察到内容生产、分发投放,再到用投流、回流以后的效果数据持续优化我们的模型,给客户提供一站式的全链路解决方案。因为它是一个动态调优的过程,所以投放时间越久结果就会越好。

举个例子,我们服务过一个国际美妆品牌,它们本身的画面调性、内容点都很好,也符合平台的调性,但ROI 或者前端CPE这些数据一直上不来。通过AI的策略洞察我们发现,它的竞品包括行业里大家在展示防晒品的时候,会尽可能地降低画面里的油腻感,但它们的防晒产品在视频里就显得很厚重,通过AI对画面的分析我们知道问题出在哪,视频内容怎么调整,后面整个ROI包括 CPE就都上来了。

以上是决策式AI通过洞察分析能够给到的一些结论,比如你的视频应该是什么样的情感调性?画面语言的卖点是什么?形成既标准同时又多元化的模版,这是视频生成的基础条件。接下来第二步就是我们今天重点在讨论的生成式AI。

奥创有两个比较核心的能力点,一是用AI做10到100批量化的内容生产。比如我们为某国内一线电商平台一天生产10万条视频素材,这个层面更多是代替重复类工作,在决策式AI洞察并形成模版的基础之上,结合已有的品牌素材或者电商素材生成原创性不低于人的新视频,它的投放效果一般会比过往效果更好,在一项代理合作测试中,我们的视频在抖音的跑出率是该机构原视频的两倍。

另一种更偏创意类0-1的视频生产,比如我们和某新消费雪糕品牌合作过一个风格化广告片,包含大量的视频特效,我们用的是video to video的形式去生成,整个广告片的质感和效果非常好,但制作周期只用了三四天。还有一块是我们文生商品视频技术,给到我们一个商品之后,我们可以通过AI结合3D建模把产品应用到不同场景、组成类似广告片的内容。

基于以上,我们还有一个可以管理所有物料素材和图文视频的系统,方便品牌在一个系统里对过往内容做重复利用。此外,所有分发出去的新内容也是模型训练的一部分,投放结果会再影响后续的内容策略,形成一个完整的全链路营销。

谭北平:品牌营销人非常善于学习新概念、使用新工具,我相信很多从业者应该都已经尝试或者正在用AI协助工作,我能看到的一些变化是什么?第一,社媒营销不止内容生成这一部分,而是要往前走一步,把内容之外的需求、调性都分析清楚;第二,要把自己独特的数据和资源放进模型,才能生成差异化的内容。

广告主都很焦虑,现在有一个词叫AI平权,工具面前人人平等,但实际上企业追求的并不是平等而是竞争优势。AI时代怎么获得竞争优势,具体到社媒营销这个层面企业一定要从内容生产端向前延伸,洞察消费者心理、洞察新趋势。当然除了生成内容之外,今天我们讲多模态,包括数字人直播等形式也在进一步加速AI在社媒领域的应用。

除此之外,行业内包括我们自己也在探索一件事:通过AI帮助中国品牌更好地出海。本地化运营一直是品牌出海的难点,让AI学习海外市场与消费者的特征与行为习惯,直接生成更本土化的内容,让产品研发更适配海外市场需求,服务当地客户,我觉得这也是大家未来都会探索的一个方向。

任一:非常认同谭老师这个观点。中国在短视频领域的营销应该是领先世界的,包括我们的算法逻辑也非常先进,现在大家更多讨论的是怎么把中国这套系统和模式放到全球体系内运行,而在全球化的竞争中,AI的渗透作用会更强。

36氪品牌主理人:能感受到这一轮技术爆发让大部分行业内的人都比较兴奋,感觉机会又来了。因为这两年品牌的日子大多不太好过,现阶段他们做社媒营销主要面临哪些痛点?

董浩宇:我们在过去五六年经历了从流量增速红利时代,到「留量」时代,进而进入到精准营销时代这样一个过程。现在很多品牌方都在讲「我如何把精准的内容投放给精准的消费者,最终带来产品转化和整个品牌好感度的提升」,这是他们最关注的问题。

它的痛点在于「算法窘境」这四个字。无论是小红书、抖音、快手还是其他一些社媒平台,现在基本是用算法逻辑去判定内容,然后推荐给对应的人群,所以只有获得的推荐够多,才能带来好的品牌曝光以及转评赞、转化等数据,这就变成了算法窘境,大家在这个窘境中不断挣扎,为了要完成KPI中的各种数据和转化,过去做10条内容如今可能要做100条内容才有一条能爆,为了流量与转化而去迎合算法。

AI生产内容的时代,可以用数据去推演平台、社媒的算法,然后不断进行内容优化,也许就可以让品牌从算法窘境中走出来。所以现在有一个说法是用AI算法打败算法、判定算法,最后让算法去帮品牌赢得消费者。

谭北平:除了算法窘境,另一个我想强调的是内容衰减的问题。今天我们社媒平台里的内容分发是由算法决定的,这个过程中内容的消耗是一个巨大的问题,你的内容可能只会被一小部分人看到。

过去一个广告片可以反复播放很多遍,强化记忆效果,但在社媒平台上内容重复是大忌,还没迈出门槛就会被算法挡住,挡住之后就没有在消费者面前出现的机会了。所以算法其实在加速内容的消耗。

社媒需要大量的内容投放,过去内容生产力是一个问题,现在AIGC能够解决这个困境。今天的社媒还有一个痛点是内容生产的尺度把控,卡太严内容很难做,卡太松可能对品牌有损耗,所以内容策略该怎么做?需要把品牌进一步故事化、生活化、场景化,这背后也反映了marketing在从广告思维向社媒思维转变。

任一:很同意董老师的观点。其实现在各平台的算法都是黑盒,每个平台的黑盒还不一样,所以品牌方制作的视频到底能获得什么样的流量?你都是不确定的。

我之前做品牌市场的时候,可能三个月做一支广告片,然后通过OTV这种投放就能完成整个季度目标,这是过去市场部的运营模式。但现在的营销逻辑是每天都需要生产大量的内容,给到不同消费者,平台的竞争逻辑是鼓励创意,但算法和分发也更偏向于日抛型,这就不仅是算法窘境,也是从业人员精力的窘境、是管理者的决策窘境。

十几二十个视频内容拿过来到底哪一条能跑出来?市场部也很难给到执行人员非常明确的决策,这就导致现在有大量重复的工作,生产了大量达不到效果的内容。

一方面受制于平台算法不得不做,一方面人工生产力和决策力存在局限性,这两块都比较难。

社媒营销我把它分为两种类型。第一种以信息流这类效果广告为代表,我能知道自己投进去的钱换回多少流量、多少用户,但现阶段的瓶颈是当你优化到一个数值的时候就很难再获得流量。第二种是种草的逻辑,可能有一部分CPE焦虑,比如怎么把视频的互动量做高,但更焦虑的点其实是CPE上去了销量没上去,这两者的关联很难做到。你的视频曝光非常好,但没有销量转化,就很难衡量这些钱花出去带来了什么直接结果。

这样一对比好像还不如直接去做信息流,这也会导致大家不愿意做创意和创新。以上是品牌方比较核心的几个焦虑点。

36氪品牌主理人:以奥创的产品为例,有可能针对性地去解决以上哪些痛点?

任一:举个例子,某个产品它的受众里既有小镇青年也有退休妈妈,那针对这两个群体的卖点、生成的内容包括使用的场景可能都是不同的。

我们的产品能从洞察开始就把这个层次分解出来,然后根据不同的人群的痛点生产批量化的内容。过去品牌的视频量可能最多几百个,也很难针对各个人群精准地输出不同卖点,奥创的能力就可以针对性地解决这个问题,更好地优化投放结果。

刚才大家有提到用算法对抗算法,因为当我们不断用大量视频去尝试就会发现其中哪些视频的跑量率更高,就能找到更匹配算法的解法。当然媒体平台的算法逻辑也在迭代,我们就需要不断地生成内容去持续地反馈调优。

36氪品牌主理人:现阶段还有哪些比较成功的AI实践案例?

董浩宇:快消品牌通过AIGC生产社媒内容已经比较多了。曾经我在伊利的时候有一个项目叫「未来牛奶」,现在它们充分用AI不断做产品包装创新,在社媒上抛出海报号召用户参与,让消费者成为AI共创新品反馈的一环,然后快速上市。

过去的选品逻辑是品牌方要自己说这是一个新品,想办法让消费者种草、买单。现在利用AI工具的便捷性实现内容的参与和共创,根据反馈做创新是非常有趣的,消费者也更愿意为其买单,这是一个很好的闭环逻辑。

我的上一家公司美的,现在很多社媒内容也开始用机器生成,比如将节气和时下热点事件结合,社交媒体内容的实效性能够被充分体现。过去一张海报的制作周期两三天,现在几个小时就能完成从创意生成到审核反馈的过程。

谭北平:我们服务的很多品牌,过去他们的直播话术都比较简单、重复,我们就帮助品牌方提炼产品特性,结合热点和时效,通过AI完善了很多辅助话术。当然最终选择权在主播个人,我们提供的是更多的角度和素材去帮他优化直播效果。

这个过程是,我们先通过AI洞察找到产品在不同场景中的卖点和故事性,针对不同人群和痛点生成大量故事线,KOL可以找到最契合他特性的内容,整体提高内容生产的效率和个性化。这里你看不到AI的痕迹,因为技术是藏在营销后面、帮助品牌和主播提高效率的。

把营销创新预算的26.9%留给AI

36氪品牌主理人:一个确定性趋势是随着技术的发展,工具的使用门槛会进一步降低,未来大家都模型化、批量化使用AI内容生成,品牌个性化表达如何实现?尤其是和竞品之间的内容壁垒如何构建?

任一:大模型更多解决的是通用问题,具体到不同的领域现在有很多垂直模型,它能进一步学习行业或者品牌数据。比如我们服务过某国际知名可乐品牌,通过学习它过往的文案、广告片等数据,让机器理解它的语言,就能生成符合品牌逻辑和调性的内容。

公司可以部署这种私有化模型,品牌投放的内容越多,在平台里跑出的数据就越多,只要合作程度足够深,模型也会越来越个性化。

董浩宇:我现在接触的一些大品牌,比如某国际顶级的快消品牌和顶级的餐饮品牌,都在自建自己品牌的小模型。把品牌的定位、产品包括人群的数据、过往的创意内容都给到模型去训练,确保调性的一致。

和这些CMO交流的时候,我问你们为什么要这么做?他们讲到一个知识体系传承的问题。从这个维度来看未来人工智能就能够把控品牌与内容的调性。

回到任总刚提到的问题,现在大量的生成内容可能都来不及审核,未来可能就需要靠品牌小模型去设定算法审核的机制,70分的内容可以直接投放,当然每个品牌还是需要10%的精品内容需要靠人的创意实现。

谭北平:内容的模版化其实分两种,比如多巴胺营销、特种兵旅游很火,品牌内容往热点和社会情绪上去靠很正常,甚至要比谁的速度更快、做得更好。另一种是品牌自己的模版,当消费者看到某个场景、元素、某种表达方式或者VI就知道这是哪个品牌,这是品牌应该追求的状态。

品牌个性化模版+衍生的内容创意,这是品牌的长期资产。所以我认为模版化是好事,但一定是自己的模版化。

36氪品牌主理人:各位都有提到小模型、私有化部署,国内明确在做这件事的品牌好像没那么多,有哪些顾虑点?

谭北平:大企业束缚太多,数据隐私、合规和安全是现在它们更关注的点。小品牌其实可以更大胆一点,因为小品牌跑得快,就不要瞻前顾后,这是一个快速追赶的机会。

任一:这里其实有一个责任问题,因为AI也会犯错,当内容生成量足够大的时候靠人工审核把控是很难的,如果画面调性不符、出现违禁词,谁来承担这个责任?所以不止在技术层面,也要考虑责任划定的问题、立法的问题,每一个环节都要完善。

谭北平:相比自动驾驶这类零容错率的领域,营销行业其实还好,我认为可以大胆一点尝试,允许AI犯错。

董浩宇:要有容错机制。很多大品牌方比如可口可乐,就是70、20、10的原则,10%的营销预算是可以去犯错的。这部分钱就是用来去尝试和创新的,品牌要愿意承担失败的风险,因为一旦成功回报可能超过百分之几百。

品牌方现阶段最关心两个问题,一是版权,二是法律,这部分现在已经逐步有解决方案去完善了。我认同谭老师提到的,在创新的过程中品牌方可以大胆一点,当然前提是这个失败要在可控风险范围之内。

36氪品牌主理人:总结大家提到的几个关键点,一是要允许试错,二是胆子要大一点,尤其是中小品牌,所以这是一个更容易跑出来、或者进一步拉开差距的机会?

董浩宇:做到「三个垂直」的中小品牌在AI时代更有机会。第一是心智垂直,它的产品心智、品牌心智和特定消费者能够垂直共融;第二是产品垂直,它的产品属性和消费者的需求融合;第三是渠道垂直,不需要大而全的泛化,一个阶段内专注做好小红书或者抖音等某一个垂直渠道。

做好三个垂直,中小品牌完全有机会跑出来,然后再把优势扩大到全域营销。当然大品牌的优势在于它的资源、数据,以及能够用更敏捷的方式孵化体系内的创业团队,去进行阶段性创新。人工智能是算法均权的时代,大家各有优势。

任一 :国际化公司和大企业对AI的拥抱程度非常高,刚才提到的伊利,据我们了解它可能有100多人的团队去做AI的模型训练,投入非常高。

为什么看好大企业在这一轮的发展?首先头部公司在资源能力上是有抢跑优势的,第二模型训练的核心要素是数据、算力和模型,很多中小企业存在一个问题是很多资产还没有数字化,这点非常关键。

所以人工智能时代带来最主要的两个提升,一是在营销的精准度层面,因为有历史数据化的模型、广告内容等资源沉淀,这一定是更利好大型企业做更精准的投放和内容生成,它的模型也会更精准。二是带来生产效率的提升,这一点对中小企业更友好,过去可能市场部总共两三个人,未来AI可以帮助解决生产力的问题。

36氪品牌主理人:有品牌方关注现阶段AI的收费问题,目前品牌合作或者部署私有化的成本大概在什么水平?

任一:奥创目前更多服务大品牌客户,以定制化需求为主,这类按项目制收费,比如我们给品牌提供一个技术方案以及模型算法的训练等。

AI内容生产可以按生产的模式做相关的收费,它一定比人工成本低,可能行业里普遍三、四百块一条视频,在内容收费端里就几十块。还有另外一块是很多客户会合作全链路营销的服务,从洞察到制作到投放,当ROI超过一个数字的时候,超过的部分也可以跟品牌做结算。

谭北平:如果你是本身具备一定技术能力的公司,可以用一些开源模型,它基本不收费,可能会有少量的商业license费用但是也非常低,比过去真的要便宜太多了。

董浩宇:品牌方关心这个问题有可能是因为马上又要做预算了,到底是留100万还是200万做 AIGC呢?

给大家一个参考,你营销创新预算的26. 9%,明年可能是要留给人工智能的,这是International Data Corporation针对美国上百个企业CMO做的一个调查统计结果。

我个人建议你明年如果有1000万营销创新的预算,可能要留269万做AI。就像谭老师刚也提到的,如果它是一个通用大模型,品牌现在就可以先用起来了。和老板去讲一下,申请一部分预算开启你在AI营销上的创新,我的团队找我的话,我之前批起来也是很快的。

人工智能时代的企业转型,CMO可以做主导

36氪品牌主理人:听下来在当下的营销领域,数据、计算和科学性的比重越来越大,创造力和感性的部分还有多大价值?

董浩宇:我自己是个营销人,我觉得营销最重要的还是创意,在学术理论中,它展现的是其实两种能力:一种叫结合能力,即如何将已有信息、元素像拼图一样组成一个全新的概念;另一个是扩散思维与聚焦思维,比如我们过去一直在做的脑暴。

在扩散思维的部分,AI可以形成辅助,但在聚焦思维的部分,对广告营销人的挑战会变得更大,因为你的选项太多了。其实并不是有了AI对创意人的需求减弱了,而是对批判性思维和独特见解、聚焦思维的能力要求更高了。

谭北平:创造力、创意和情绪都可以被量化,并且可以通过AI技术实现标准化生产,从而提升营销效率和效果。其中人的个性、需求和情绪都可以被科学方法量化,这与过去的大五人格理论(big-five theory of personality)类似。

现在随着AI技术的发展,这些量化的数据可以被用于提升创造力和生产效率,从而实现更精准的营销。这是我们营销科学对于这件事情的理解,我认为万物都是可以用科学的方式来工作的。

任一:其实可以观察到两个现象,第一在媒体端信息大爆炸的时代,创意其实更难出圈,这是时代趋势;第二作为一个市场营销人,从KPI的角度来看,其实是你的老板对营销科学的部分更感兴趣。

比如我投了100万信息流广告,要明确到底能带来多少新用户,衡量工作结果,才能达到老板的需求。过去我们做TVC、创意广告,可能投了200万下去一个水花都没有,很难计算其为公司带来的收益,价值就不容易被认可。

所以从汇报包括整个市场体系搭建的现实情况来看,科学的部分会越来越多地占据我们的核心工作时间,企业的数据化资产沉淀也会更多,形成越来越多体系化的方法论。当然我不会觉得创意不重要,创意还是未来营销中的一个重要环节。

36氪品牌主理人:既要保持创造力,又要拿出可量化的数据结果验证工作价值,挑战还是挺大的。有没有一些建议可以给到团队和从业者。

谭北平:上一轮元宇宙的时候大家都还有点懵,但人工智能已经是确定性方向了。最早我们做洞察的时候,数据表格都是手画的,后来有了Excel,今天有了AI。率先去掌握它,未来比的就是谁用得更好。

任一:我们认为人工智能在市场营销端更像一个Copilot的角色,帮助从业人员制作更好的内容,但替代不了你的策略能力。什么是策略能力?比如我今年的目标是800万增长,具体到市场策略要通过什么样的方式去完成,这是由人决定的部分。

董浩宇:我在品牌方工作很多年,过去品牌喜欢brief agency去干活,但现在你还brief agency可能都赶不上AI可以为你赋能的这个阶段了,品牌方也要会用模型、会用工具,同时保持自己的批判性思维能力。

我觉得营销人要向前走一步。过去我们marketer一直在整个决策链路的中后端,一个产品已经定品了、价格确定了,营销的同学你去给它种草、卖好,但是它的前端已经被定制化了,你的影响力是弱的。

人工智能时代来了,营销人反而是第一个冲上去拥抱的。过去企业做数字化转型阶段,主力军是IT部门,是CTO、CIO们,在人工智能时代,主力其实是CMO们。有了人工智能的辅助,我们是不是可以在选品的阶段、甚至产品创意的早期就介入?这时候营销人就从中后端走向了前端,再走到最后销售的环节形成闭环。

别产品卖不好的时候,就说是marketing 没做好,对吧?

所以当你掌握了AI,并且能够将AI工具和数据结合在一起,你就是这个品牌组织里最有能力的核心部门。我们可以跟老板要钱、要资源,保底先干起来,营销人一定要抓住这个时机。数字化时代有的是CTO做主导、有的是CMO做主导,我认为现在AI时代必须是营销人做主导,属于我们的时代来了。

任一:接着补充一点,我们前面讨论的更多偏向于怎么在现有工作流里去做效率的优化,但董老师讲的其实是C2M的反向定制模式。

每家企业都有两条供应链,一条是内容供应链,一条是产品供应链。过去内容供应链端受限于实际的生产力和成本,没办法做这样的反向定制,比如先在用户端用内容做产品或者卖点的测试,然后反馈到产品研发端推动生产。

刚刚董老师分享伊利的案例,就特别像一个反向定制。当内容生产成本足够低,我们完全可以在产品出来之前,先去做卖点测试,根据用户反馈思考哪些卖点需要调整,反向推动产品定制,这就完全可以改变整个供应链生产的形式。所以董老师刚刚分享的这一点,非常贴合未来整体的发展方向。

36氪品牌主理人:当营销进入人机协作时代,大家有什么畅想或者期待吗?

任一:在未来的市场部里,Copilot会帮我们完成所有执行的工作,人可以聚焦在创意和策划,给公司做更有品牌调性、更爆款的东西,让大家可以专注在更核心的创意类工作,这是我们希望能够实现的状态。

董浩宇:我希望AI能够帮助我们创造更多的品牌价值、然后是商业价值,最后要落到社会价值的实现。我希望企业能够把由AI产出的价值回馈给到这个社会,承担足够的社会责任感,让更多普通人也受益。这个责任其实在我们肩上很重,所以我希望营销人能够努力先把商业价值和品牌价值实现,然后再用它创造的价值去反哺社会。

谭北平:我看到了更多中国人的机会,过去我们讲品牌的国际化,虽然我们有很强的制造力,但营销能力是一个短板。随着我们积极拥抱AI,未来会涌现一批中国品牌建设和全球化的浪潮,塑造更多全球品牌,这是我们行业和所有品牌人的新机会。

本文由「阿至」原创出品

想要做大模型训练、AIGC落地应用、使用最新AI工具和学习AI课程的朋友,扫下方二维码加入我们人工智能交流群

Nature最新封面:AI战胜了人类世界冠军,创下最快无人机竞速记录

人工智能(AI)再次战胜了人类冠军。

这一次,是在无人机竞速领域。

来自苏黎世大学机器人与感知研究组(Robotics and Perception Group)的 Elia Kaufmann 博士团队及其英特尔团队联合设计了一种自动驾驶系统——Swift,该系统驾驶无人机的能力可在一对一冠军赛中战胜人类对手。

这一重磅研究成果,刚刚以封面文章的形式发表在了最新一期的 Nature 杂志上。

图|最新一期 Nature 封面。(来源:Nature

在一篇同期发表在 Nature 上的新闻与观点文章中,荷兰代尔夫特理工大学的研究院 Guido de Croon 教授写道,“Kaufmann 等人的研究是机器人学家克服现实差距的一个很好的案例。尽管 Swift 使用 AI 学习技术和传统工程算法的巧妙组合进行训练,但该系统应该在一个更真实多变的环境中进一步开发,从而充分释放这项技术的潜力。”

尽管如此,研究团队表示,该研究标志着移动机器人学和机器智能的一个里程碑,或可启发在其他物理系统中部署基于混合学习的解决方案,如自动驾驶的地面车辆、飞行器和个人机器人。

融合 AI 与工程算法的智能训练

当前,基于深度强化学习的人工智能(AI)系统在雅达利(Atari)游戏、国际象棋、《星际争霸》和 GT 赛车(Gran Turismo)等游戏中已经超越了人类冠军。然而,这些成就全部发生在虚拟环境中,而非真实世界中。

无人机竞速对经验飞行员和 AI 都具挑战,但 AI 而言,更具挑战性。因为在虚拟环境中,资源几乎是无限的,而转向现实世界意味着必须使用有限的资源。对于无人机来说,情况尤为如此,因为取代人类飞行员的传感器和计算设备必须被搭载到空中。

另外,现实世界比虚拟世界更加不可预测。虽然模拟的比赛无人机可以按照预先编程的轨迹完美地行驶,但对一个无人机发出的单一指令可能产生多种效果,影响难以预测,对于通过 AI 训练的无人机尤为复杂。

传统的端到端学习方法难以将虚拟环境的映射转移到现实世界,虚拟和现实两者之间存在着现实差距,而现实差距构成了机器人领域中主要的挑战之一。

在该研究中,Swift 系统通过将 AI 学习技术与传统工程算法融合,实现了智能训练。首先,该系统通过人工神经网络处理无人机从相机中获取的图像,从而精准地检测到门的角落。然后,利用双目视觉软件用来计算无人机的速度。

Swift 系统的创新之处在于另一个人工神经网络,将无人机的状态映射到调整推力和旋转速率的命令。利用强化学习,通过模拟中的试错过程来优化从环境中获得的奖励。在这个算法中,该系统采用了强化学习,而非端到端学习,从而可以通过抽象概念来弥合现实与模拟之间的差距。

由于状态编码的抽象层次高于原始图像,强化学习模拟器不再需要复杂的视觉环境。这一优化减少了模拟系统与真实系统之间的差异,提升了模拟速度,使得系统能够在大约 50 分钟内完成学习。

据论文描述,Swift 由两个关键模块组成:observation policy 和 control policy。其中,observation policy 由一个视觉惯性估计器和一个门检测器组成,可以将高维视觉和惯性信息转化为任务特定的低维编码;control policy 由一个两层感知器表示,可以接受低维编码,并将其转化为无人机指令。

超越人类飞行员的速度和性能

此次比赛的赛道是由一位外部世界级 FPV(第一人称主视角)飞行员设计的。赛道包括七个正方形的门,排列在一个 30×30×8 米的空间内,组成了一圈长达 75 米的赛道。

此外,该赛道具有特色鲜明且具有挑战性的机动动作,包括 Split-S 等。即使发生碰撞,只要飞行器能够继续飞行,飞行员依旧可以继续比赛。如果发生碰撞且两架无人机均无法完成赛道,距离更远的无人机获胜。

Swift 与 Alex Vanover(2019 年无人机竞赛联盟世界冠军)、Thomas Bitmatta(2019 年 MultiGP 冠军)和 Marvin Schaepper(3X Swiss 冠军)等人进行了多场比赛。

其中,Swift 在与 A. Vanover 的 9 场比赛中赢得了 5 场,在与 T. Bitmatta 的 7 场比赛中赢得了 4 场,在与 M. Schaepper 的 9 场比赛中赢得了 6 场。

另外,Swift 共有 10 次失利,其中 40% 因与对手碰撞,40% 因与门碰撞,20% 因比人类飞行员飞行较慢。

总体而言,Swift 在与每位人类飞行员的大多数比赛中取得了胜利。另外,Swift 还创下了最快的比赛时间记录,比人类飞行员 A. Vanover 的最佳成绩快了半秒钟。

从数据分析中可以看出,Swift 在整体上比所有人类飞行员都要快,尤其在起飞和紧急转弯等关键部分表现更为出色。Swift 的起飞反应时间更短,平均比人类飞行员提前 120 毫秒。而且,Swift 的加速度更大,在第一个门处达到更高的速度。

此外,Swift 在急转弯时表现出更紧密的机动动作,这可能是因为它在较长时间尺度上优化了轨迹。与此相反,人类飞行员更倾向于在较短时间尺度内规划动作,最多考虑到未来一个门的位置。


此外,Swift 在整体赛道上实现了最高的平均速度,找到了最短的比赛线路,并成功地将飞行器保持在极限附近飞行。在时间试验中,Swift 与人类冠军进行比较,自主无人机表现出更加一致的圈速,平均值和方差都较低,而人类飞行员的表现则更加因个体情况而异,平均值和方差较高。

综合分析表明,自主无人机 Swift 在比赛中展现出了出色的性能,不仅在速度上表现优越,还在飞行策略上具备独特的特点,使其能够在整个比赛中保持高水平的表现。

不只是无人机竞速

这项研究探索了基于来自物理环境的嘈杂和不完整传感输入的自主无人机竞速,展示了一个自主物理系统在竞速中取得了冠军级的表现,有时甚至可以超越人类世界冠军,突显了机器人在受欢迎体育项目中达到世界冠军级表现的重要意义,为机器人技术和智能取得了重要里程碑。

然而,与人类飞行员相比,研究中的系统并未经过撞击后的恢复训练。这限制了系统在撞击后继续飞行的能力,而人类飞行员可以在硬件损坏的情况下继续竞赛。

另外,与人类飞行员相比,Swift 系统对环境变化的适应能力较弱,使用的相机刷新率较低;尽管该方法在自主无人机竞速中表现优异,但其在其他现实系统和环境中的泛化能力尚未充分探究。


显然,Kaufmann 及其团队的成就不仅仅局限于无人机竞速领域,这项技术或许可能会在军事应用中找到用武之地
。而且,他们的技术可使无人机更平稳、更快速、更长程,有助于机器人在驾驶、清洁、检查等领域更有效地利用有限的资源。

但要实现这些目标,研究团队依然需要解决诸多挑战。正如 Croon 在评论文章中所说,“为了在任何竞赛环境中都能打败人类飞行员,该系统必须能应对外部干扰,如风,光照条件变化,定义不太清晰的各种门,其他竞速无人机和许多其他因素。”

想要做大模型训练、AIGC落地应用、使用最新AI工具和学习AI课程的朋友,扫下方二维码加入我们人工智能交流群

谷歌AI芯片“火力全开”大升级,推出第五代AI芯片:瞄准大模型和生成式AI

当地时间29日,谷歌举办了Google Cloud Next 2023大会,宣布了20多款从产品更新。

推出了全新的 TPU 产品 ——Cloud TPU v5e,它是 AI 优化的基础设施产品组合,并将成为迄今为止最具成本效益、多功能且可扩展的云 TPU。

TPU v4性能确实卓越,但是AI芯片向来竞争激烈,而且人工智能技术本身有很多的不确定性和风险。未来,谷歌是否能够保持其在人工智能硬件领域的领先地位,还有待观察。

谷歌首次公布了其用于训练人工智能模型的AI芯片TPU v4的详细信息,并称比英伟达系统更快、更高效——与同等规模的系统相比,谷歌超级计算机比基于英伟达A100芯片的系统最高快1.7倍,节能效率提高1.9倍。

据科技媒体TechCrunch报道,谷歌云计算和机器学习基础设施副总裁兼总经理马克·洛迈尔(Mark Lohmeyer) 表示,“这是迄今为止最具成本效益且易于访问的云TPU。” 洛迈尔强调,谷歌云确保用户能够将其TPU集群扩展到以前无法达到的水平,让客户能够轻松扩展他们的人工智能模型,超越单个TPU集群的物理边界。也就是说,单个大型人工智能工作负载可以跨越多个物理TPU集群,扩展到数万个芯片,并且经济高效。“在云GPU和云TPU方面,我们为客户提供了很多选择和灵活性,以满足我们看到的人工智能工作负载的广泛需求。”

随着谷歌云不断升级 AI 基础设施,越来越多的客户将选择使用谷歌云服务。据此前谷歌母公司 Aplabet 的介绍,超过半数的生成式 AI 初创公司正在使用谷歌的云计算平台。

对于谷歌而言,此次 Cloud TPU v5e 拉开了进一步变革产品模式、赋能云客户的序幕。

想要做大模型训练、AIGC落地应用、使用最新AI工具和学习AI课程的朋友,扫下方二维码加入我们人工智能交流群